Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural

Cerrar este cuadro de búsqueda.

DOI: https://doi.org/10.1007/s00226-016-0884-3

Abstract:    The hygroscopicity and thermodynamic properties of Pinus canariensis wood buried in volcanic ash, dating from 1100 BC, were studied and compared with recently felled juvenile and mature wood of the same species. The sorption isotherms were obtained by the saturated salt method at 35 and 50 ºC. The isotherms were fitted using the Guggenheim–Anderson–de Boer model. The thermodynamic parameters were determined following the Clausius–Clapeyron integration method. To understand the behaviour of each type of wood, the chemical composition, infrared spectra and X-ray diffractograms were determined for each sample. The mature wood has a higher sugar content and lower extractive content than the juvenile and the buried wood. For both temperatures, the isotherm of the mature wood is above the isotherm of the juvenile wood and this, in turn, is above the isotherm of the buried wood, primarily influenced by the higher cellulose and hemicellulose contents and lower extractives content in the mature wood, resulting in a higher number of accessible –OH groups. Degradation of the buried wood due to high temperatures explains why its isotherms are below the isotherms of the recent wood. The energy involved in the desorption process is greater than in adsorption. Similarly, more energy is involved in the mature wood than in the juvenile wood, and the energy involved in the juvenile wood is greater than in the buried wood.